Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
JAMA Netw Open ; 6(5): e2314428, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-20233159

ABSTRACT

Importance: Platelet activation is a potential therapeutic target in patients with COVID-19. Objective: To evaluate the effect of P2Y12 inhibition among critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: This international, open-label, adaptive platform, 1:1 randomized clinical trial included critically ill (requiring intensive care-level support) patients hospitalized with COVID-19. Patients were enrolled between February 26, 2021, through June 22, 2022. Enrollment was discontinued on June 22, 2022, by the trial leadership in coordination with the study sponsor given a marked slowing of the enrollment rate of critically ill patients. Intervention: Participants were randomly assigned to receive a P2Y12 inhibitor or no P2Y12 inhibitor (usual care) for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death and, for participants who survived to hospital discharge, the number of days free of cardiovascular or respiratory organ support up to day 21 of the index hospitalization. The primary safety outcome was major bleeding, as defined by the International Society on Thrombosis and Hemostasis. Results: At the time of trial termination, 949 participants (median [IQR] age, 56 [46-65] years; 603 male [63.5%]) had been randomly assigned, 479 to the P2Y12 inhibitor group and 470 to usual care. In the P2Y12 inhibitor group, ticagrelor was used in 372 participants (78.8%) and clopidogrel in 100 participants (21.2%). The estimated adjusted odds ratio (AOR) for the effect of P2Y12 inhibitor on organ support-free days was 1.07 (95% credible interval, 0.85-1.33). The posterior probability of superiority (defined as an OR > 1.0) was 72.9%. Overall, 354 participants (74.5%) in the P2Y12 inhibitor group and 339 participants (72.4%) in the usual care group survived to hospital discharge (median AOR, 1.15; 95% credible interval, 0.84-1.55; posterior probability of superiority, 80.8%). Major bleeding occurred in 13 participants (2.7%) in the P2Y12 inhibitor group and 13 (2.8%) in the usual care group. The estimated mortality rate at 90 days for the P2Y12 inhibitor group was 25.5% and for the usual care group was 27.0% (adjusted hazard ratio, 0.96; 95% CI, 0.76-1.23; P = .77). Conclusions and Relevance: In this randomized clinical trial of critically ill participants hospitalized for COVID-19, treatment with a P2Y12 inhibitor did not improve the number of days alive and free of cardiovascular or respiratory organ support. The use of the P2Y12 inhibitor did not increase major bleeding compared with usual care. These data do not support routine use of a P2Y12 inhibitor in critically ill patients hospitalized for COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Subject(s)
COVID-19 , Purinergic P2Y Receptor Agonists , Humans , Male , Middle Aged , Critical Illness/therapy , Hemorrhage , Hospital Mortality , Ticagrelor/therapeutic use , Purinergic P2Y Receptor Agonists/therapeutic use
2.
Blood Cells Mol Dis ; 101: 102746, 2023 07.
Article in English | MEDLINE | ID: covidwho-2309352

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by a pro-inflammatory state associated with organ failure, thrombosis, and death. We investigated a novel inflammatory biomarker, γ' fibrinogen (GPF), in 103 hospitalized patients with COVID-19 and 19 healthy controls. We found significant associations between GPF levels and the severity of COVID-19 as judged by blood oxygen saturation (SpO2). The mean level of GPF in the patients with COVID-19 was significantly higher than in controls (69.8 (95 % CI 64.8-74.8) mg/dL compared with 36.9 (95 % CI 31.4-42.4) mg/dL, p < 0.0001), whereas C-reactive protein (CRP), lactate dehydrogenase (LDH), and total fibrinogen levels were not significantly different between groups. Mean GPF levels were significantly highest in patients with severe COVID-19 (SpO2 ≤ 93 %, GPF 75.2 (95 % CI 68.7-81.8) mg/dL), compared to mild/moderate COVID-19 (SpO2 > 93 %, GPF 62.5 (95 % CI 55.0-70.0) mg/dL, p = 0.01, AUC of 0.68, 95 % CI 0.57-0.78; Youden's index cutpoint 62.9 mg/dL, sensitivity 0.64, specificity 0.63). In contrast, CRP, interleukin-6, ferritin, LDH, D-dimers, and total fibrinogen had weaker associations with COVID-19 disease severity (all ROC curves with lower AUCs). Thus, GPF may be a useful inflammatory marker of COVID-19 respiratory disease severity.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Fibrinogen , Biomarkers , C-Reactive Protein/analysis , Patient Acuity , Retrospective Studies
3.
Front Immunol ; 14: 1130821, 2023.
Article in English | MEDLINE | ID: covidwho-2299747

ABSTRACT

Introduction: There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods: Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results: Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion: Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Receptor for Advanced Glycation End Products , Nucleocapsid , Antigens , Biomarkers , Antigens, Viral
4.
JAMA ; 329(13): 1066-1077, 2023 04 04.
Article in English | MEDLINE | ID: covidwho-2260871

ABSTRACT

Importance: Randomized clinical trials (RCTs) of therapeutic-dose heparin in patients hospitalized with COVID-19 produced conflicting results, possibly due to heterogeneity of treatment effect (HTE) across individuals. Better understanding of HTE could facilitate individualized clinical decision-making. Objective: To evaluate HTE of therapeutic-dose heparin for patients hospitalized for COVID-19 and to compare approaches to assessing HTE. Design, Setting, and Participants: Exploratory analysis of a multiplatform adaptive RCT of therapeutic-dose heparin vs usual care pharmacologic thromboprophylaxis in 3320 patients hospitalized for COVID-19 enrolled in North America, South America, Europe, Asia, and Australia between April 2020 and January 2021. Heterogeneity of treatment effect was assessed 3 ways: using (1) conventional subgroup analyses of baseline characteristics, (2) a multivariable outcome prediction model (risk-based approach), and (3) a multivariable causal forest model (effect-based approach). Analyses primarily used bayesian statistics, consistent with the original trial. Exposures: Participants were randomized to therapeutic-dose heparin or usual care pharmacologic thromboprophylaxis. Main Outcomes and Measures: Organ support-free days, assigning a value of -1 to those who died in the hospital and the number of days free of cardiovascular or respiratory organ support up to day 21 for those who survived to hospital discharge; and hospital survival. Results: Baseline demographic characteristics were similar between patients randomized to therapeutic-dose heparin or usual care (median age, 60 years; 38% female; 32% known non-White race; 45% Hispanic). In the overall multiplatform RCT population, therapeutic-dose heparin was not associated with an increase in organ support-free days (median value for the posterior distribution of the OR, 1.05; 95% credible interval, 0.91-1.22). In conventional subgroup analyses, the effect of therapeutic-dose heparin on organ support-free days differed between patients requiring organ support at baseline or not (median OR, 0.85 vs 1.30; posterior probability of difference in OR, 99.8%), between females and males (median OR, 0.87 vs 1.16; posterior probability of difference in OR, 96.4%), and between patients with lower body mass index (BMI <30) vs higher BMI groups (BMI ≥30; posterior probability of difference in ORs >90% for all comparisons). In risk-based analysis, patients at lowest risk of poor outcome had the highest propensity for benefit from heparin (lowest risk decile: posterior probability of OR >1, 92%) while those at highest risk were most likely to be harmed (highest risk decile: posterior probability of OR <1, 87%). In effect-based analysis, a subset of patients identified at high risk of harm (P = .05 for difference in treatment effect) tended to have high BMI and were more likely to require organ support at baseline. Conclusions and Relevance: Among patients hospitalized for COVID-19, the effect of therapeutic-dose heparin was heterogeneous. In all 3 approaches to assessing HTE, heparin was more likely to be beneficial in those who were less severely ill at presentation or had lower BMI and more likely to be harmful in sicker patients and those with higher BMI. The findings illustrate the importance of considering HTE in the design and analysis of RCTs. Trial Registration: ClinicalTrials.gov Identifiers: NCT02735707, NCT04505774, NCT04359277, NCT04372589.


Subject(s)
COVID-19 , Venous Thromboembolism , Male , Humans , Female , Middle Aged , Heparin/adverse effects , Anticoagulants/adverse effects , Bayes Theorem , Venous Thromboembolism/prevention & control , Randomized Controlled Trials as Topic
5.
Front Immunol ; 14: 1130288, 2023.
Article in English | MEDLINE | ID: covidwho-2259138

ABSTRACT

Introduction: Thromboinflammatory complications are well described sequalae of Coronavirus Disease 2019 (COVID-19), and there is evidence of both hyperreactive platelet and inflammatory neutrophil biology that contributes to the thromoinflammatory milieu. It has been demonstrated in other thromboinflammatory diseases that the circulating environment may affect cellular behavior, but what role this environment exerts on platelets and neutrophils in COVID-19 remains unknown. We tested the hypotheses that 1) plasma from COVID-19 patients can induce a prothrombotic platelet functional phenotype, and 2) contents released from platelets (platelet releasate) from COVID-19 patients can induce a proinflammatory neutrophil phenotype. Methods: We treated platelets with COVID-19 patient and disease control plasma, and measured their aggregation response to collagen and adhesion in a microfluidic parallel plate flow chamber coated with collagen and thromboplastin. We exposed healthy neutrophils to platelet releasate from COVID-19 patients and disease controls and measured neutrophil extracellular trap formation and performed RNA sequencing. Results: We found that COVID-19 patient plasma promoted auto-aggregation, thereby reducing response to further stimulation ex-vivo. Neither disease condition increased the number of platelets adhered to a collagen and thromboplastin coated parallel plate flow chamber, but both markedly reduced platelet size. COVID-19 patient platelet releasate increased myeloperoxidasedeoxyribonucleic acid complexes and induced changes to neutrophil gene expression. Discussion: Together these results suggest aspects of the soluble environment circulating platelets, and that the contents released from those neutrophil behavior independent of direct cellular contact.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , Neutrophils/metabolism , COVID-19/metabolism , Thromboplastin/metabolism , Collagen/metabolism
7.
Ann Surg ; 275(5): e725-e727, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-2051782

ABSTRACT

OBJECTIVE: This study aimed to characterize changes in firearm injuries at 5 level 1 trauma centers in Northern California in the 12 months following the start of the COVID-19 pandemic compared with the preceding 4 years, accounting for regional variations and seasonal trends. SUMMARY AND BACKGROUND DATA: Increased firearm injuries have been reported during the early peaks of the COVID-19 pandemic despite shelter-in-place restrictions. However, these data are overwhelmingly from singlecenter studies, during the initial phase of the pandemic prior to lifting of shelter-in-place restrictions, or do not account for seasonal trends. METHODS: An interrupted time-series analysis (ITSA) of all firearm injuries presenting to 5 adult level 1 trauma centers in Northern California was performed (January 2016to February 2021). ITSA modeled the association of the onset of the COVID-19 pandemic (March 2020) with monthly firearm injuries using the ordinary least-squares method, included month indicators to adjust for seasonality, and specified lags of up to 12 months to account for autocorrelation. RESULTS: Prior to the start of COVID-19, firearm injuries averaged (±SD) of 86 (±16) and were decreasing by 0.5/month (P < 0.01). The start of COVID- 19 (March 2020) was associated with an alarming increase of 39 firearm injuries/month (P < 0.01) followed by an ongoing rise of 3.5/mo (P < 0.01). This resulted in an average of 130 (±26) firearm injuries/month during the COVID-19 period and included 8 of the 10 highest monthly firearm injury rates in the past 5 years. CONCLUSIONS: These data highlight an alarming escalation in firearm injuries in the 12 months following the onset of the COVID-19 pandemic in Northern California. Additional studies and resources are needed to better understand and address this parallel public health crisis.


Subject(s)
COVID-19 , Firearms , Wounds, Gunshot , Adult , COVID-19/epidemiology , California/epidemiology , Humans , Pandemics , Retrospective Studies , Trauma Centers , Wounds, Gunshot/epidemiology
8.
Am J Respir Crit Care Med ; 206(8): 961-972, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1874929

ABSTRACT

Rationale: Autopsy and biomarker studies suggest that endotheliopathy contributes to coronavirus disease (COVID-19)-associated acute respiratory distress syndrome. However, the effects of COVID-19 on the lung endothelium are not well defined. We hypothesized that the lung endotheliopathy of COVID-19 is caused by circulating host factors and direct endothelial infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objectives: We aimed to determine the effects of SARS-CoV-2 or sera from patients with COVID-19 on the permeability and inflammatory activation of lung microvascular endothelial cells. Methods: Human lung microvascular endothelial cells were treated with live SARS-CoV-2; inactivated viral particles; or sera from patients with COVID-19, patients without COVID-19, and healthy volunteers. Permeability was determined by measuring transendothelial resistance to electrical current flow, where decreased resistance signifies increased permeability. Inflammatory mediators were quantified in culture supernatants. Endothelial biomarkers were quantified in patient sera. Measurements and Main Results: Viral PCR confirmed that SARS-CoV-2 enters and replicates in endothelial cells. Live SARS-CoV-2, but not dead virus or spike protein, induces endothelial permeability and secretion of plasminogen activator inhibitor 1 and vascular endothelial growth factor. There was substantial variability in the effects of SARS-CoV-2 on endothelial cells from different donors. Sera from patients with COVID-19 induced endothelial permeability, which correlated with disease severity. Serum levels of endothelial activation and injury biomarkers were increased in patients with COVID-19 and correlated with severity of illness. Conclusions: SARS-CoV-2 infects and dysregulates endothelial cell functions. Circulating factors in patients with COVID-19 also induce endothelial cell dysfunction. Our data point to roles for both systemic factors acting on lung endothelial cells and viral infection of endothelial cells in COVID-19-associated endotheliopathy.


Subject(s)
COVID-19 , Vascular Diseases , Biomarkers/metabolism , Endothelial Cells/metabolism , Humans , Inflammation Mediators/metabolism , Lung , Plasminogen Activator Inhibitor 1/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vascular Diseases/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Sci Adv ; 7(37): eabh2434, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1405214

ABSTRACT

Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19.

11.
N Engl J Med ; 385(9): 790-802, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1343498

ABSTRACT

BACKGROUND: Thrombosis and inflammation may contribute to the risk of death and complications among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19. METHODS: In this open-label, adaptive, multiplatform, controlled trial, we randomly assigned patients who were hospitalized with Covid-19 and who were not critically ill (which was defined as an absence of critical care-level organ support at enrollment) to receive pragmatically defined regimens of either therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d-dimer level. RESULTS: The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met. Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support-free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58). The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95% credible interval, 0.5 to 7.2). The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d-dimer cohort, 92.9% in the low d-dimer cohort, and 97.3% in the unknown d-dimer cohort. Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis. CONCLUSIONS: In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis. (ATTACC, ACTIV-4a, and REMAP-CAP ClinicalTrials.gov numbers, NCT04372589, NCT04505774, NCT04359277, and NCT02735707.).


Subject(s)
Anticoagulants/administration & dosage , COVID-19 Drug Treatment , Heparin/administration & dosage , Thrombosis/prevention & control , Adult , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/mortality , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Hospital Mortality , Humans , Male , Middle Aged , Survival Analysis
12.
N Engl J Med ; 385(9): 777-789, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1343497

ABSTRACT

BACKGROUND: Thrombosis and inflammation may contribute to morbidity and mortality among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation would improve outcomes in critically ill patients with Covid-19. METHODS: In an open-label, adaptive, multiplatform, randomized clinical trial, critically ill patients with severe Covid-19 were randomly assigned to a pragmatically defined regimen of either therapeutic-dose anticoagulation with heparin or pharmacologic thromboprophylaxis in accordance with local usual care. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. RESULTS: The trial was stopped when the prespecified criterion for futility was met for therapeutic-dose anticoagulation. Data on the primary outcome were available for 1098 patients (534 assigned to therapeutic-dose anticoagulation and 564 assigned to usual-care thromboprophylaxis). The median value for organ support-free days was 1 (interquartile range, -1 to 16) among the patients assigned to therapeutic-dose anticoagulation and was 4 (interquartile range, -1 to 16) among the patients assigned to usual-care thromboprophylaxis (adjusted proportional odds ratio, 0.83; 95% credible interval, 0.67 to 1.03; posterior probability of futility [defined as an odds ratio <1.2], 99.9%). The percentage of patients who survived to hospital discharge was similar in the two groups (62.7% and 64.5%, respectively; adjusted odds ratio, 0.84; 95% credible interval, 0.64 to 1.11). Major bleeding occurred in 3.8% of the patients assigned to therapeutic-dose anticoagulation and in 2.3% of those assigned to usual-care pharmacologic thromboprophylaxis. CONCLUSIONS: In critically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin did not result in a greater probability of survival to hospital discharge or a greater number of days free of cardiovascular or respiratory organ support than did usual-care pharmacologic thromboprophylaxis. (REMAP-CAP, ACTIV-4a, and ATTACC ClinicalTrials.gov numbers, NCT02735707, NCT04505774, NCT04359277, and NCT04372589.).


Subject(s)
Anticoagulants/administration & dosage , COVID-19 Drug Treatment , Heparin/administration & dosage , Thrombosis/prevention & control , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/mortality , Critical Illness , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Heparin/therapeutic use , Hospital Mortality , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Respiration, Artificial , Treatment Failure
13.
J Trauma Acute Care Surg ; 90(4): 700-707, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1203800

ABSTRACT

BACKGROUND: The large-scale social distancing efforts to reduce SARS-CoV-2 transmission have dramatically changed human behaviors associated with traumatic injuries. Trauma centers have reported decreases in trauma volume, paralleled by changes in injury mechanisms. We aimed to quantify changes in trauma epidemiology at an urban Level I trauma center in a county that instituted one of the earliest shelter-in-place orders to inform trauma care during future pandemic responses. METHODS: A single-center interrupted time-series analysis was performed to identify associations of shelter-in-place with trauma volume, injury mechanisms, and patient demographics in San Francisco, California. To control for short-term trends in trauma epidemiology, weekly level data were analyzed 6 months before shelter-in-place. To control for long-term trends, monthly level data were analyzed 5 years before shelter-in-place. RESULTS: Trauma volume decreased by 50% in the week following shelter-in-place (p < 0.01), followed by a linear increase each successive week (p < 0.01). Despite this, trauma volume for each month (March-June 2020) remained lower compared with corresponding months for all previous 5 years (2015-2019). Pediatric trauma volume showed similar trends with initial decreases (p = 0.02) followed by steady increases (p = 0.05). Reductions in trauma volumes were due entirely to changes in nonviolent injury mechanisms, while violence-related injury mechanisms remained unchanged (p < 0.01). CONCLUSION: Although the shelter-in-place order was associated with an overall decline in trauma volume, violence-related injuries persisted. Delineating and addressing underlying factors driving persistent violence-related injuries during shelter-in-place orders should be a focus of public health efforts in preparation for future pandemic responses. LEVEL OF EVIDENCE: Epidemiological study, level III.


Subject(s)
COVID-19 , Disease Transmission, Infectious/prevention & control , Physical Abuse/statistics & numerical data , Physical Distancing , Trauma Centers/statistics & numerical data , Wounds and Injuries , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Child , Correlation of Data , Female , Humans , Interrupted Time Series Analysis , Male , Retrospective Studies , SARS-CoV-2 , San Francisco/epidemiology , Wounds and Injuries/epidemiology , Wounds and Injuries/etiology , Wounds and Injuries/therapy
SELECTION OF CITATIONS
SEARCH DETAIL